MakeItFrom.com
Menu (ESC)

7108A Aluminum vs. S21460 Stainless Steel

7108A aluminum belongs to the aluminum alloys classification, while S21460 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7108A aluminum and the bottom bar is S21460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 11 to 13
46
Fatigue Strength, MPa 120 to 130
390
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 210
580
Tensile Strength: Ultimate (UTS), MPa 350
830
Tensile Strength: Yield (Proof), MPa 290 to 300
430

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 210
920
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 520
1330
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 24
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
14
Density, g/cm3 2.9
7.6
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 38 to 44
320
Resilience: Unit (Modulus of Resilience), kJ/m3 610 to 640
460
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 34
30
Strength to Weight: Bending, points 38
26
Thermal Shock Resistance, points 15 to 16
17

Alloy Composition

Aluminum (Al), % 91.6 to 94.4
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.040
17 to 19
Copper (Cu), % 0 to 0.050
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
57.3 to 63.7
Magnesium (Mg), % 0.7 to 1.5
0
Manganese (Mn), % 0 to 0.050
14 to 16
Nickel (Ni), % 0
5.0 to 6.0
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Zinc (Zn), % 4.8 to 5.8
0
Zirconium (Zr), % 0.15 to 0.25
0
Residuals, % 0 to 0.15
0