MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. ACI-ASTM CB7Cu-1 Steel

7129 Aluminum belongs to the aluminum alloys classification, while ACI-ASTM CB7Cu-1 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is ACI-ASTM CB7Cu-1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
5.7 to 11
Fatigue Strength, MPa 150 to 190
420 to 590
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 430
960 to 1350
Tensile Strength: Yield (Proof), MPa 380 to 390
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 510
1500
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1150
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
1500 to 3590
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
34 to 48
Strength to Weight: Bending, points 43 to 44
28 to 35
Thermal Diffusivity, mm2/s 58
4.6
Thermal Shock Resistance, points 19
32 to 45

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0 to 0.1
15.5 to 17.7
Copper (Cu), % 0.5 to 0.9
2.5 to 3.2
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
72.3 to 78.4
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 0.7
Nickel (Ni), % 0
3.6 to 4.6
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0