MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. AWS BNi-9

7129 Aluminum belongs to the aluminum alloys classification, while AWS BNi-9 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is AWS BNi-9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 430
580

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Melting Completion (Liquidus), °C 630
1060
Melting Onset (Solidus), °C 510
1060
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
9.3
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
260

Common Calculations

Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 41
19
Strength to Weight: Bending, points 43 to 44
18
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 91 to 94
0 to 0.050
Boron (B), % 0
3.3 to 4.0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0 to 0.1
13.5 to 16.5
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 0.5 to 0.9
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 1.5
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
77.1 to 83.3
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.15
0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.050
0 to 0.050
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5