MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.1221 Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.1221 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.1221 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
10 to 21
Fatigue Strength, MPa 150 to 190
240 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 250 to 260
450 to 520
Tensile Strength: Ultimate (UTS), MPa 430
730 to 870
Tensile Strength: Yield (Proof), MPa 380 to 390
390 to 550

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
48
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
67 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
410 to 800
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 41
26 to 31
Strength to Weight: Bending, points 43 to 44
23 to 26
Thermal Diffusivity, mm2/s 58
13
Thermal Shock Resistance, points 19
23 to 28

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0 to 0.1
0 to 0.4
Copper (Cu), % 0.5 to 0.9
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
97.1 to 98.8
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0