MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.4443 Stainless Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.4443 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.4443 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 150 to 190
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 430
490
Tensile Strength: Yield (Proof), MPa 380 to 390
210

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
4.0
Embodied Energy, MJ/kg 150
54
Embodied Water, L/kg 1150
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
17
Strength to Weight: Bending, points 43 to 44
18
Thermal Diffusivity, mm2/s 58
3.9
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
18 to 20
Copper (Cu), % 0.5 to 0.9
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
60.4 to 69.5
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0
10 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0