MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.4482 Stainless Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 150 to 190
420 to 450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 250 to 260
510 to 530
Tensile Strength: Ultimate (UTS), MPa 430
770 to 800
Tensile Strength: Yield (Proof), MPa 380 to 390
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
690 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
28 to 29
Strength to Weight: Bending, points 43 to 44
24 to 25
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 19
21 to 22

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
19.5 to 21.5
Copper (Cu), % 0.5 to 0.9
0 to 1.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
66.1 to 74.9
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0