MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.4547 Stainless Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.4547 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.4547 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
39
Fatigue Strength, MPa 150 to 190
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 250 to 260
510
Tensile Strength: Ultimate (UTS), MPa 430
750
Tensile Strength: Yield (Proof), MPa 380 to 390
340

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
28
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
5.6
Embodied Energy, MJ/kg 150
75
Embodied Water, L/kg 1150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
240
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 41
26
Strength to Weight: Bending, points 43 to 44
23
Thermal Diffusivity, mm2/s 58
3.8
Thermal Shock Resistance, points 19
16

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.1
19.5 to 20.5
Copper (Cu), % 0.5 to 0.9
0.5 to 1.0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
51 to 56.3
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0