MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.4618 Stainless Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.4618 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.4618 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
51
Fatigue Strength, MPa 150 to 190
240 to 250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 250 to 260
480 to 500
Tensile Strength: Ultimate (UTS), MPa 430
680 to 700
Tensile Strength: Yield (Proof), MPa 380 to 390
250 to 260

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1150
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
270 to 280
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
160 to 170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
24 to 25
Strength to Weight: Bending, points 43 to 44
22 to 23
Thermal Diffusivity, mm2/s 58
4.0
Thermal Shock Resistance, points 19
15 to 16

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.1
16.5 to 18.5
Copper (Cu), % 0.5 to 0.9
1.0 to 2.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
62.7 to 72.5
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
5.5 to 9.5
Nickel (Ni), % 0
4.5 to 5.5
Nitrogen (N), % 0
0 to 0.15
Phosphorus (P), % 0
0 to 0.070
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0