MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.4877 Stainless Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
36
Fatigue Strength, MPa 150 to 190
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 250 to 260
420
Tensile Strength: Ultimate (UTS), MPa 430
630
Tensile Strength: Yield (Proof), MPa 380 to 390
200

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 630
1400
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.2
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 41
22
Strength to Weight: Bending, points 43 to 44
20
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 91 to 94
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 0.5 to 0.9
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
36.4 to 42.3
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0