MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 1.7108 Steel

7129 Aluminum belongs to the aluminum alloys classification, while EN 1.7108 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 1.7108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 430
670 to 2070

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
410
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 150
46
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1150
47

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 41
24 to 75
Strength to Weight: Bending, points 43 to 44
22 to 47
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 19
20 to 63

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0 to 0.1
0.2 to 0.45
Copper (Cu), % 0.5 to 0.9
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
95.9 to 96.9
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0.7 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
1.6 to 2.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0