MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN 2.4665 Nickel

7129 Aluminum belongs to the aluminum alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 150 to 190
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 250 to 260
520
Tensile Strength: Ultimate (UTS), MPa 430
790
Tensile Strength: Yield (Proof), MPa 380 to 390
300

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
990
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
9.2
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 41
26
Strength to Weight: Bending, points 43 to 44
22
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 91 to 94
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.1
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0.5 to 0.9
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
17 to 20
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
40.3 to 53.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0.2 to 1.0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0