MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. EN AC-45300 Aluminum

Both 7129 Aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
71
Elongation at Break, % 9.0 to 9.1
1.0 to 2.8
Fatigue Strength, MPa 150 to 190
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 430
220 to 290
Tensile Strength: Yield (Proof), MPa 380 to 390
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 880
890
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
36
Electrical Conductivity: Equal Weight (Specific), % IACS 120
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 41
23 to 29
Strength to Weight: Bending, points 43 to 44
30 to 35
Thermal Diffusivity, mm2/s 58
60
Thermal Shock Resistance, points 19
10 to 13

Alloy Composition

Aluminum (Al), % 91 to 94
90.2 to 94.2
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 0.5 to 0.9
1.0 to 1.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 1.3 to 2.0
0.35 to 0.65
Manganese (Mn), % 0 to 0.1
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.15
4.5 to 5.5
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.050
0 to 0.25
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants