MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. N06035 Nickel

7129 Aluminum belongs to the aluminum alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
210
Elongation at Break, % 9.0 to 9.1
34
Fatigue Strength, MPa 150 to 190
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
84
Shear Strength, MPa 250 to 260
440
Tensile Strength: Ultimate (UTS), MPa 430
660
Tensile Strength: Yield (Proof), MPa 380 to 390
270

Thermal Properties

Latent Heat of Fusion, J/g 380
340
Maximum Temperature: Mechanical, °C 180
1030
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 880
450
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 41
22
Strength to Weight: Bending, points 43 to 44
20
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 91 to 94
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0 to 0.1
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.5 to 0.9
0 to 0.3
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
0 to 2.0
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.050
0
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0 to 0.050
0 to 0.2
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0