MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. N07752 Nickel

7129 Aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
190
Elongation at Break, % 9.0 to 9.1
22
Fatigue Strength, MPa 150 to 190
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 250 to 260
710
Tensile Strength: Ultimate (UTS), MPa 430
1120
Tensile Strength: Yield (Proof), MPa 380 to 390
740

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
1450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 41
37
Strength to Weight: Bending, points 43 to 44
29
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 19
34

Alloy Composition

Aluminum (Al), % 91 to 94
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0 to 0.1
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0.5 to 0.9
0 to 0.5
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
5.0 to 9.0
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.050
2.3 to 2.8
Vanadium (V), % 0 to 0.050
0 to 0.1
Zinc (Zn), % 4.2 to 5.2
0 to 0.050
Residuals, % 0 to 0.15
0