MakeItFrom.com
Menu (ESC)

7129 Aluminum vs. N08028 Stainless Steel

7129 Aluminum belongs to the aluminum alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7129 Aluminum and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
200
Elongation at Break, % 9.0 to 9.1
45
Fatigue Strength, MPa 150 to 190
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 250 to 260
400
Tensile Strength: Ultimate (UTS), MPa 430
570
Tensile Strength: Yield (Proof), MPa 380 to 390
240

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 510
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.4
Embodied Energy, MJ/kg 150
89
Embodied Water, L/kg 1150
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 38
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1050 to 1090
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 41
19
Strength to Weight: Bending, points 43 to 44
19
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 19
12

Alloy Composition

Aluminum (Al), % 91 to 94
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.1
26 to 28
Copper (Cu), % 0.5 to 0.9
0.6 to 1.4
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.3
29 to 40.4
Magnesium (Mg), % 1.3 to 2.0
0
Manganese (Mn), % 0 to 0.1
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.050
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 4.2 to 5.2
0
Residuals, % 0 to 0.15
0