MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. ASTM Grade HE Steel

7175 aluminum belongs to the aluminum alloys classification, while ASTM grade HE steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is ASTM grade HE steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.8 to 5.9
10
Fatigue Strength, MPa 150 to 180
160
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 520 to 570
670
Tensile Strength: Yield (Proof), MPa 430 to 490
310

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 480
1360
Specific Heat Capacity, J/kg-K 870
490
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.2
3.5
Embodied Energy, MJ/kg 150
50
Embodied Water, L/kg 1130
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
56
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
240
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
24
Strength to Weight: Bending, points 48 to 51
22
Thermal Diffusivity, mm2/s 53
3.6
Thermal Shock Resistance, points 23 to 25
14

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0.2 to 0.5
Chromium (Cr), % 0.18 to 0.28
26 to 30
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
53.9 to 65.8
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0