MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. ASTM Grade HL Steel

7175 aluminum belongs to the aluminum alloys classification, while ASTM grade HL steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is ASTM grade HL steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.8 to 5.9
11
Fatigue Strength, MPa 150 to 180
150
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 520 to 570
500
Tensile Strength: Yield (Proof), MPa 430 to 490
270

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 480
1340
Specific Heat Capacity, J/kg-K 870
490
Thermal Expansion, µm/m-K 23
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
27
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.5
Embodied Energy, MJ/kg 150
65
Embodied Water, L/kg 1130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
48
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
18
Strength to Weight: Bending, points 48 to 51
18
Thermal Shock Resistance, points 23 to 25
11

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0.2 to 0.6
Chromium (Cr), % 0.18 to 0.28
28 to 32
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
40.8 to 53.8
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
18 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0