MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.3956 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.3956 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.3956 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.8 to 5.9
27
Fatigue Strength, MPa 150 to 180
240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 520 to 570
650
Tensile Strength: Yield (Proof), MPa 430 to 490
330

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1080
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.8
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1130
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
270
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
23
Strength to Weight: Bending, points 48 to 51
21
Thermal Shock Resistance, points 23 to 25
18

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.18 to 0.28
20.5 to 23.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
51.9 to 62.1
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0