MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.4317 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.4317 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.4317 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.8 to 5.9
17
Fatigue Strength, MPa 150 to 180
380
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Tensile Strength: Ultimate (UTS), MPa 520 to 570
860
Tensile Strength: Yield (Proof), MPa 430 to 490
630

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
770
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 140
26
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.4
Embodied Energy, MJ/kg 150
33
Embodied Water, L/kg 1130
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
1010
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
31
Strength to Weight: Bending, points 48 to 51
26
Thermal Diffusivity, mm2/s 53
7.0
Thermal Shock Resistance, points 23 to 25
30

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0.18 to 0.28
12 to 13.5
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
78.7 to 84.5
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
3.5 to 5.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0