MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.4542 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.8 to 5.9
5.7 to 20
Fatigue Strength, MPa 150 to 180
370 to 640
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 290 to 330
550 to 860
Tensile Strength: Ultimate (UTS), MPa 520 to 570
880 to 1470
Tensile Strength: Yield (Proof), MPa 430 to 490
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
16
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
13
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 1130
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
31 to 52
Strength to Weight: Bending, points 48 to 51
26 to 37
Thermal Diffusivity, mm2/s 53
4.3
Thermal Shock Resistance, points 23 to 25
29 to 49

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0.18 to 0.28
15 to 17
Copper (Cu), % 1.2 to 2.0
3.0 to 5.0
Iron (Fe), % 0 to 0.2
69.6 to 79
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0