MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.4557 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.4557 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.4557 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.8 to 5.9
40
Fatigue Strength, MPa 150 to 180
260
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 520 to 570
560
Tensile Strength: Yield (Proof), MPa 430 to 490
300

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1090
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 140
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.2
5.6
Embodied Energy, MJ/kg 150
76
Embodied Water, L/kg 1130
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 48 to 52
19
Strength to Weight: Bending, points 48 to 51
19
Thermal Diffusivity, mm2/s 53
4.0
Thermal Shock Resistance, points 23 to 25
12

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.18 to 0.28
19.5 to 20.5
Copper (Cu), % 1.2 to 2.0
0.5 to 1.0
Iron (Fe), % 0 to 0.2
49.5 to 56.3
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.2
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
17.5 to 19.5
Nitrogen (N), % 0
0.18 to 0.24
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0