MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.4971 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.4971 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.4971 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.8 to 5.9
34
Fatigue Strength, MPa 150 to 180
270
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
81
Shear Strength, MPa 290 to 330
530
Tensile Strength: Ultimate (UTS), MPa 520 to 570
800
Tensile Strength: Yield (Proof), MPa 430 to 490
340

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 140
13
Thermal Expansion, µm/m-K 23
15

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.2
7.6
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
220
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 48 to 52
26
Strength to Weight: Bending, points 48 to 51
23
Thermal Diffusivity, mm2/s 53
3.4
Thermal Shock Resistance, points 23 to 25
19

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0.18 to 0.28
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
24.3 to 37.1
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.1
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0