MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. EN 1.5508 Steel

7175 aluminum belongs to the aluminum alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.8 to 5.9
11 to 20
Fatigue Strength, MPa 150 to 180
210 to 320
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 290 to 330
300 to 360
Tensile Strength: Ultimate (UTS), MPa 520 to 570
420 to 1460
Tensile Strength: Yield (Proof), MPa 430 to 490
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
51
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1130
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
260 to 640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
24
Strength to Weight: Axial, points 48 to 52
15 to 52
Strength to Weight: Bending, points 48 to 51
16 to 36
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 23 to 25
12 to 43

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0.18 to 0.28
0 to 0.3
Copper (Cu), % 1.2 to 2.0
0 to 0.25
Iron (Fe), % 0 to 0.2
97.9 to 99.199
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0