MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. Grade CY40 Nickel

7175 aluminum belongs to the aluminum alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.8 to 5.9
34
Fatigue Strength, MPa 150 to 180
160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 520 to 570
540
Tensile Strength: Yield (Proof), MPa 430 to 490
220

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 640
1350
Melting Onset (Solidus), °C 480
1300
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 140
14
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.4
Embodied Carbon, kg CO2/kg material 8.2
9.1
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
150
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 48 to 52
18
Strength to Weight: Bending, points 48 to 51
18
Thermal Diffusivity, mm2/s 53
3.7
Thermal Shock Resistance, points 23 to 25
16

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.4
Chromium (Cr), % 0.18 to 0.28
14 to 17
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
0 to 11
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Nickel (Ni), % 0
67 to 86
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.15
0 to 3.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0