MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. Grade N12MV Nickel

7175 aluminum belongs to the aluminum alloys classification, while grade N12MV nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is grade N12MV nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 3.8 to 5.9
6.8
Fatigue Strength, MPa 150 to 180
130
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
84
Tensile Strength: Ultimate (UTS), MPa 520 to 570
600
Tensile Strength: Yield (Proof), MPa 430 to 490
310

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 640
1620
Melting Onset (Solidus), °C 480
1570
Specific Heat Capacity, J/kg-K 870
390
Thermal Expansion, µm/m-K 23
10

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.0
9.2
Embodied Carbon, kg CO2/kg material 8.2
16
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1130
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
34
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
22
Strength to Weight: Axial, points 48 to 52
18
Strength to Weight: Bending, points 48 to 51
17
Thermal Shock Resistance, points 23 to 25
19

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0.18 to 0.28
0 to 1.0
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
4.0 to 6.0
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
60.2 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.1
0
Vanadium (V), % 0
0.2 to 0.6
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0