MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. C19100 Copper

7175 aluminum belongs to the aluminum alloys classification, while C19100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is C19100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 3.8 to 5.9
17 to 37
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
43
Shear Strength, MPa 290 to 330
170 to 330
Tensile Strength: Ultimate (UTS), MPa 520 to 570
250 to 630
Tensile Strength: Yield (Proof), MPa 430 to 490
75 to 550

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 480
1040
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
250
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
55
Electrical Conductivity: Equal Weight (Specific), % IACS 99
56

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 3.0
8.9
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
60 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
24 to 1310
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 46
18
Strength to Weight: Axial, points 48 to 52
7.7 to 20
Strength to Weight: Bending, points 48 to 51
9.9 to 18
Thermal Diffusivity, mm2/s 53
73
Thermal Shock Resistance, points 23 to 25
8.9 to 22

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
96.5 to 98.6
Iron (Fe), % 0 to 0.2
0 to 0.2
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0.9 to 1.3
Phosphorus (P), % 0
0.15 to 0.35
Silicon (Si), % 0 to 0.15
0
Tellurium (Te), % 0
0.35 to 0.6
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0 to 0.5
Residuals, % 0
0 to 0.5