MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. C74400 Nickel Silver

7175 aluminum belongs to the aluminum alloys classification, while C74400 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is C74400 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 3.8 to 5.9
43
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
39
Shear Strength, MPa 290 to 330
240
Tensile Strength: Ultimate (UTS), MPa 520 to 570
350
Tensile Strength: Yield (Proof), MPa 430 to 490
120

Thermal Properties

Latent Heat of Fusion, J/g 380
180
Maximum Temperature: Mechanical, °C 180
140
Melting Completion (Liquidus), °C 640
930
Melting Onset (Solidus), °C 480
910
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
120
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
26
Electrical Conductivity: Equal Weight (Specific), % IACS 99
29

Otherwise Unclassified Properties

Base Metal Price, % relative 10
25
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
63
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 46
19
Strength to Weight: Axial, points 48 to 52
12
Strength to Weight: Bending, points 48 to 51
14
Thermal Diffusivity, mm2/s 53
37
Thermal Shock Resistance, points 23 to 25
12

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
62 to 66
Iron (Fe), % 0 to 0.2
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
2.0 to 4.0
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
29.6 to 36
Residuals, % 0
0 to 0.3