MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. C76200 Nickel Silver

7175 aluminum belongs to the aluminum alloys classification, while C76200 nickel silver belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is C76200 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
44
Tensile Strength: Ultimate (UTS), MPa 520 to 570
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 380
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 640
1030
Melting Onset (Solidus), °C 480
980
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 140
45
Thermal Expansion, µm/m-K 23
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 3.0
8.2
Embodied Carbon, kg CO2/kg material 8.2
3.6
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1130
310

Common Calculations

Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 46
20
Strength to Weight: Axial, points 48 to 52
13 to 27
Strength to Weight: Bending, points 48 to 51
14 to 23
Thermal Diffusivity, mm2/s 53
14
Thermal Shock Resistance, points 23 to 25
13 to 26

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.2 to 2.0
57 to 61
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0
11 to 13.5
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
24.2 to 32
Residuals, % 0
0 to 0.5