MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. N07716 Nickel

7175 aluminum belongs to the aluminum alloys classification, while N07716 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.8 to 5.9
34
Fatigue Strength, MPa 150 to 180
690
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
78
Shear Strength, MPa 290 to 330
580
Tensile Strength: Ultimate (UTS), MPa 520 to 570
860
Tensile Strength: Yield (Proof), MPa 430 to 490
350

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 640
1480
Melting Onset (Solidus), °C 480
1430
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 140
11
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 33
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.2
13
Embodied Energy, MJ/kg 150
190
Embodied Water, L/kg 1130
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
240
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 46
23
Strength to Weight: Axial, points 48 to 52
28
Strength to Weight: Bending, points 48 to 51
24
Thermal Diffusivity, mm2/s 53
2.8
Thermal Shock Resistance, points 23 to 25
24

Alloy Composition

Aluminum (Al), % 88 to 91.4
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
19 to 22
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 0 to 0.2
0 to 11.3
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.15
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.1
1.0 to 1.6
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0