MakeItFrom.com
Menu (ESC)

7175 Aluminum vs. S44700 Stainless Steel

7175 aluminum belongs to the aluminum alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7175 aluminum and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.8 to 5.9
23
Fatigue Strength, MPa 150 to 180
300
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
82
Shear Strength, MPa 290 to 330
380
Tensile Strength: Ultimate (UTS), MPa 520 to 570
600
Tensile Strength: Yield (Proof), MPa 430 to 490
450

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.6
Embodied Energy, MJ/kg 150
49
Embodied Water, L/kg 1130
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18 to 29
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1310 to 1730
480
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 46
25
Strength to Weight: Axial, points 48 to 52
21
Strength to Weight: Bending, points 48 to 51
20
Thermal Shock Resistance, points 23 to 25
19

Alloy Composition

Aluminum (Al), % 88 to 91.4
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.18 to 0.28
28 to 30
Copper (Cu), % 1.2 to 2.0
0 to 0.15
Iron (Fe), % 0 to 0.2
64.9 to 68.5
Magnesium (Mg), % 2.1 to 2.9
0
Manganese (Mn), % 0 to 0.1
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.15
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 5.1 to 6.1
0
Residuals, % 0 to 0.15
0