MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. A357.0 Aluminum

Both 7178 aluminum and A357.0 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
70
Elongation at Break, % 4.5 to 12
3.7
Fatigue Strength, MPa 120 to 210
100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 140 to 380
240
Tensile Strength: Ultimate (UTS), MPa 240 to 640
350
Tensile Strength: Yield (Proof), MPa 120 to 560
270

Thermal Properties

Latent Heat of Fusion, J/g 370
500
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 630
610
Melting Onset (Solidus), °C 480
560
Specific Heat Capacity, J/kg-K 860
900
Thermal Conductivity, W/m-K 130
160
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
40
Electrical Conductivity: Equal Weight (Specific), % IACS 91
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.1
2.6
Embodied Carbon, kg CO2/kg material 8.2
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
12
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
53
Strength to Weight: Axial, points 21 to 58
38
Strength to Weight: Bending, points 28 to 54
43
Thermal Diffusivity, mm2/s 47
68
Thermal Shock Resistance, points 10 to 28
17

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.6 to 2.4
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 0.2
Magnesium (Mg), % 2.4 to 3.1
0.4 to 0.7
Manganese (Mn), % 0 to 0.3
0 to 0.1
Silicon (Si), % 0 to 0.4
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0.040 to 0.2
Zinc (Zn), % 6.3 to 7.3
0 to 0.1
Residuals, % 0
0 to 0.15