MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. ACI-ASTM CH20 Steel

7178 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CH20 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is ACI-ASTM CH20 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
38
Fatigue Strength, MPa 120 to 210
290
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 240 to 640
610
Tensile Strength: Yield (Proof), MPa 120 to 560
350

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 480
1430
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
3.7
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1110
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
22
Strength to Weight: Bending, points 28 to 54
21
Thermal Diffusivity, mm2/s 47
3.7
Thermal Shock Resistance, points 10 to 28
15

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0.18 to 0.28
22 to 26
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
54.7 to 66
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
12 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0