MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. AWS E309LMo

7178 aluminum belongs to the aluminum alloys classification, while AWS E309LMo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is AWS E309LMo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 240 to 640
580

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
4.2
Embodied Energy, MJ/kg 150
59
Embodied Water, L/kg 1110
180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
21
Strength to Weight: Bending, points 28 to 54
20
Thermal Diffusivity, mm2/s 47
3.9
Thermal Shock Resistance, points 10 to 28
15

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0.18 to 0.28
22 to 25
Copper (Cu), % 1.6 to 2.4
0 to 0.75
Iron (Fe), % 0 to 0.5
53.6 to 63.5
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
12 to 14
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0