MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. AWS E320LR

7178 aluminum belongs to the aluminum alloys classification, while AWS E320LR belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
34
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 240 to 640
580

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 480
1360
Specific Heat Capacity, J/kg-K 860
460
Thermal Expansion, µm/m-K 23
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
36
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.2
6.2
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1110
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 21 to 58
20
Strength to Weight: Bending, points 28 to 54
19
Thermal Shock Resistance, points 10 to 28
15

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
19 to 21
Copper (Cu), % 1.6 to 2.4
3.0 to 4.0
Iron (Fe), % 0 to 0.5
32.7 to 42.5
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
1.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0