MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. AWS ER110S-1

7178 aluminum belongs to the aluminum alloys classification, while AWS ER110S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is AWS ER110S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.5 to 12
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 240 to 640
870
Tensile Strength: Yield (Proof), MPa 120 to 560
740

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
47
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 91
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
4.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.8
Embodied Energy, MJ/kg 150
25
Embodied Water, L/kg 1110
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
140
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
1460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 21 to 58
31
Strength to Weight: Bending, points 28 to 54
26
Thermal Diffusivity, mm2/s 47
13
Thermal Shock Resistance, points 10 to 28
26

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0 to 0.1
Carbon (C), % 0
0 to 0.090
Chromium (Cr), % 0.18 to 0.28
0 to 0.5
Copper (Cu), % 1.6 to 2.4
0 to 0.25
Iron (Fe), % 0 to 0.5
92.8 to 96.3
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
1.4 to 1.8
Molybdenum (Mo), % 0
0.25 to 0.55
Nickel (Ni), % 0
1.9 to 2.6
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.4
0.2 to 0.55
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.1
Vanadium (V), % 0
0 to 0.040
Zinc (Zn), % 6.3 to 7.3
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5