MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. EN 1.3538 Steel

7178 aluminum belongs to the aluminum alloys classification, while EN 1.3538 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is EN 1.3538 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 240 to 640
670 to 740

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
41
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 91
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1110
56

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 21 to 58
24 to 26
Strength to Weight: Bending, points 28 to 54
22 to 23
Thermal Diffusivity, mm2/s 47
11
Thermal Shock Resistance, points 10 to 28
20 to 22

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0 to 0.050
Carbon (C), % 0
0.93 to 1.1
Chromium (Cr), % 0.18 to 0.28
1.7 to 2.0
Copper (Cu), % 1.6 to 2.4
0 to 0.3
Iron (Fe), % 0 to 0.5
96 to 97.2
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0.6 to 0.8
Molybdenum (Mo), % 0
0.4 to 0.5
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0