MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. EN 1.4482 Stainless Steel

7178 aluminum belongs to the aluminum alloys classification, while EN 1.4482 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is EN 1.4482 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
34
Fatigue Strength, MPa 120 to 210
420 to 450
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
78
Shear Strength, MPa 140 to 380
510 to 530
Tensile Strength: Ultimate (UTS), MPa 240 to 640
770 to 800
Tensile Strength: Yield (Proof), MPa 120 to 560
530 to 570

Thermal Properties

Latent Heat of Fusion, J/g 370
290
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 630
1420
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.1
7.7
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1110
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
230 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
690 to 820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
28 to 29
Strength to Weight: Bending, points 28 to 54
24 to 25
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 10 to 28
21 to 22

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.18 to 0.28
19.5 to 21.5
Copper (Cu), % 1.6 to 2.4
0 to 1.0
Iron (Fe), % 0 to 0.5
66.1 to 74.9
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
4.0 to 6.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
1.5 to 3.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0