MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. EN 1.4923 Stainless Steel

7178 aluminum belongs to the aluminum alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.5 to 12
12 to 21
Fatigue Strength, MPa 120 to 210
300 to 440
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 140 to 380
540 to 590
Tensile Strength: Ultimate (UTS), MPa 240 to 640
870 to 980
Tensile Strength: Yield (Proof), MPa 120 to 560
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 91
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
2.9
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1110
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
570 to 1580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
31 to 35
Strength to Weight: Bending, points 28 to 54
26 to 28
Thermal Diffusivity, mm2/s 47
6.5
Thermal Shock Resistance, points 10 to 28
30 to 34

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0.18 to 0.28
11 to 12.5
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
83.5 to 87.1
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0

Comparable Variants