MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. EN 2.4632 Nickel

7178 aluminum belongs to the aluminum alloys classification, while EN 2.4632 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is EN 2.4632 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
17
Fatigue Strength, MPa 120 to 210
430
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
76
Shear Strength, MPa 140 to 380
770
Tensile Strength: Ultimate (UTS), MPa 240 to 640
1250
Tensile Strength: Yield (Proof), MPa 120 to 560
780

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 630
1340
Melting Onset (Solidus), °C 480
1290
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 91
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.1
8.3
Embodied Carbon, kg CO2/kg material 8.2
9.4
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1110
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
1570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 21 to 58
42
Strength to Weight: Bending, points 28 to 54
31
Thermal Diffusivity, mm2/s 47
3.3
Thermal Shock Resistance, points 10 to 28
39

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
1.0 to 2.0
Boron (B), % 0
0 to 0.020
Carbon (C), % 0
0 to 0.13
Chromium (Cr), % 0.18 to 0.28
18 to 21
Cobalt (Co), % 0
15 to 21
Copper (Cu), % 1.6 to 2.4
0 to 0.2
Iron (Fe), % 0 to 0.5
0 to 1.5
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
49 to 64
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
2.0 to 3.0
Zinc (Zn), % 6.3 to 7.3
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.15
0