MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. EN 2.4879 Cast Nickel

7178 aluminum belongs to the aluminum alloys classification, while EN 2.4879 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is EN 2.4879 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 4.5 to 12
3.4
Fatigue Strength, MPa 120 to 210
110
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 240 to 640
490
Tensile Strength: Yield (Proof), MPa 120 to 560
270

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 180
1150
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
460
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.1
8.5
Embodied Carbon, kg CO2/kg material 8.2
8.3
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
14
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 21 to 58
16
Strength to Weight: Bending, points 28 to 54
16
Thermal Diffusivity, mm2/s 47
2.8
Thermal Shock Resistance, points 10 to 28
13

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0.35 to 0.55
Chromium (Cr), % 0.18 to 0.28
27 to 30
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
9.4 to 20.7
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
47 to 50
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
4.0 to 6.0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0