MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. Grade CX2MW Nickel

7178 aluminum belongs to the aluminum alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 4.5 to 12
34
Fatigue Strength, MPa 120 to 210
260
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
84
Tensile Strength: Ultimate (UTS), MPa 240 to 640
620
Tensile Strength: Yield (Proof), MPa 120 to 560
350

Thermal Properties

Latent Heat of Fusion, J/g 370
330
Maximum Temperature: Mechanical, °C 180
980
Melting Completion (Liquidus), °C 630
1550
Melting Onset (Solidus), °C 480
1490
Specific Heat Capacity, J/kg-K 860
430
Thermal Conductivity, W/m-K 130
10
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 91
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
65
Density, g/cm3 3.1
8.9
Embodied Carbon, kg CO2/kg material 8.2
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1110
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
180
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 21 to 58
19
Strength to Weight: Bending, points 28 to 54
18
Thermal Diffusivity, mm2/s 47
2.7
Thermal Shock Resistance, points 10 to 28
17

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.18 to 0.28
20 to 22.5
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
2.0 to 6.0
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0