MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. SAE-AISI 1060 Steel

7178 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1060 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is SAE-AISI 1060 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.5 to 12
10 to 13
Fatigue Strength, MPa 120 to 210
260 to 340
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 140 to 380
370 to 450
Tensile Strength: Ultimate (UTS), MPa 240 to 640
620 to 740
Tensile Strength: Yield (Proof), MPa 120 to 560
400 to 540

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
9.6
Electrical Conductivity: Equal Weight (Specific), % IACS 91
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.8
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
1.4
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1110
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
58 to 82
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
430 to 790
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 21 to 58
22 to 26
Strength to Weight: Bending, points 28 to 54
21 to 23
Thermal Diffusivity, mm2/s 47
14
Thermal Shock Resistance, points 10 to 28
20 to 24

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0.55 to 0.65
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
98.4 to 98.9
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0