MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. SAE-AISI H13 Steel

7178 aluminum belongs to the aluminum alloys classification, while SAE-AISI H13 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is SAE-AISI H13 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
74
Tensile Strength: Ultimate (UTS), MPa 240 to 640
690 to 1820

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
29
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 91
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.0
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.2
4.3
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1110
78

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 21 to 58
25 to 65
Strength to Weight: Bending, points 28 to 54
22 to 43
Thermal Diffusivity, mm2/s 47
7.8
Thermal Shock Resistance, points 10 to 28
25 to 65

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0.32 to 0.45
Chromium (Cr), % 0.18 to 0.28
4.8 to 5.5
Copper (Cu), % 1.6 to 2.4
0 to 0.25
Iron (Fe), % 0 to 0.5
88.8 to 92
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0.2 to 0.5
Molybdenum (Mo), % 0
1.1 to 1.8
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.4
0.8 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.8 to 1.2
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0

Comparable Variants