MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. C36500 Muntz Metal

7178 aluminum belongs to the aluminum alloys classification, while C36500 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is C36500 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 4.5 to 12
40
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 27
39
Shear Strength, MPa 140 to 380
270
Tensile Strength: Ultimate (UTS), MPa 240 to 640
400
Tensile Strength: Yield (Proof), MPa 120 to 560
160

Thermal Properties

Latent Heat of Fusion, J/g 370
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 480
890
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 23
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
28
Electrical Conductivity: Equal Weight (Specific), % IACS 91
32

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
130
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
120
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 21 to 58
14
Strength to Weight: Bending, points 28 to 54
15
Thermal Diffusivity, mm2/s 47
40
Thermal Shock Resistance, points 10 to 28
13

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Chromium (Cr), % 0.18 to 0.28
0
Copper (Cu), % 1.6 to 2.4
58 to 61
Iron (Fe), % 0 to 0.5
0 to 0.15
Lead (Pb), % 0
0.25 to 0.7
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0
Silicon (Si), % 0 to 0.4
0
Tin (Sn), % 0
0 to 0.25
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
37.5 to 41.8
Residuals, % 0
0 to 0.4