MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. N10665 Nickel

7178 aluminum belongs to the aluminum alloys classification, while N10665 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is N10665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 4.5 to 12
45
Fatigue Strength, MPa 120 to 210
340
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 27
84
Shear Strength, MPa 140 to 380
600
Tensile Strength: Ultimate (UTS), MPa 240 to 640
860
Tensile Strength: Yield (Proof), MPa 120 to 560
400

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 630
1620
Melting Onset (Solidus), °C 480
1570
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 130
11
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 91
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
75
Density, g/cm3 3.1
9.3
Embodied Carbon, kg CO2/kg material 8.2
15
Embodied Energy, MJ/kg 150
200
Embodied Water, L/kg 1110
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
320
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
360
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
22
Strength to Weight: Axial, points 21 to 58
26
Strength to Weight: Bending, points 28 to 54
22
Thermal Diffusivity, mm2/s 47
3.1
Thermal Shock Resistance, points 10 to 28
27

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0.18 to 0.28
0 to 1.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
0 to 2.0
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
64.8 to 74
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0