MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. S45503 Stainless Steel

7178 aluminum belongs to the aluminum alloys classification, while S45503 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is S45503 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.5 to 12
4.6 to 6.8
Fatigue Strength, MPa 120 to 210
710 to 800
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 140 to 380
940 to 1070
Tensile Strength: Ultimate (UTS), MPa 240 to 640
1610 to 1850
Tensile Strength: Yield (Proof), MPa 120 to 560
1430 to 1700

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 480
1400
Specific Heat Capacity, J/kg-K 860
470
Thermal Expansion, µm/m-K 23
11

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
82 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 21 to 58
57 to 65
Strength to Weight: Bending, points 28 to 54
39 to 43
Thermal Shock Resistance, points 10 to 28
56 to 64

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0.18 to 0.28
11 to 12.5
Copper (Cu), % 1.6 to 2.4
1.5 to 2.5
Iron (Fe), % 0 to 0.5
72.4 to 78.9
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
7.5 to 9.5
Niobium (Nb), % 0
0.1 to 0.5
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.4
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
1.0 to 1.4
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0