MakeItFrom.com
Menu (ESC)

7178 Aluminum vs. S66286 Stainless Steel

7178 aluminum belongs to the aluminum alloys classification, while S66286 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7178 aluminum and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.5 to 12
17 to 40
Fatigue Strength, MPa 120 to 210
240 to 410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 27
75
Shear Strength, MPa 140 to 380
420 to 630
Tensile Strength: Ultimate (UTS), MPa 240 to 640
620 to 1020
Tensile Strength: Yield (Proof), MPa 120 to 560
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 180
920
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 130
15
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
26
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.2
6.0
Embodied Energy, MJ/kg 150
87
Embodied Water, L/kg 1110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24 to 52
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 2220
190 to 1150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 21 to 58
22 to 36
Strength to Weight: Bending, points 28 to 54
20 to 28
Thermal Diffusivity, mm2/s 47
4.0
Thermal Shock Resistance, points 10 to 28
13 to 22

Alloy Composition

Aluminum (Al), % 85.4 to 89.5
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.18 to 0.28
13.5 to 16
Copper (Cu), % 1.6 to 2.4
0
Iron (Fe), % 0 to 0.5
49.1 to 59.5
Magnesium (Mg), % 2.4 to 3.1
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 6.3 to 7.3
0
Residuals, % 0 to 0.15
0

Comparable Variants