MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. AWS E80C-Ni2

7204 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is AWS E80C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11 to 13
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Tensile Strength: Ultimate (UTS), MPa 220 to 380
620
Tensile Strength: Yield (Proof), MPa 120 to 310
540

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.3
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.4
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1140
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
160
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 21 to 36
22
Strength to Weight: Bending, points 28 to 40
21
Thermal Diffusivity, mm2/s 58
14
Thermal Shock Resistance, points 9.4 to 16
18

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.35
93.8 to 98.3
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.5
Nickel (Ni), % 0
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0 to 0.1
0 to 0.030
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0
0 to 0.5