MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. EN 2.4665 Nickel

7204 aluminum belongs to the aluminum alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 11 to 13
34
Fatigue Strength, MPa 110 to 130
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 130 to 220
520
Tensile Strength: Ultimate (UTS), MPa 220 to 380
790
Tensile Strength: Yield (Proof), MPa 120 to 310
300

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
990
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 520
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 39
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.4
9.2
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 21 to 36
26
Strength to Weight: Bending, points 28 to 40
22
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 9.4 to 16
20

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.3
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.35
17 to 20
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
40.3 to 53.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.2 to 1.0
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0