MakeItFrom.com
Menu (ESC)

7204 Aluminum vs. Nickel 684

7204 aluminum belongs to the aluminum alloys classification, while nickel 684 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7204 aluminum and the bottom bar is nickel 684.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11 to 13
11
Fatigue Strength, MPa 110 to 130
390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
76
Shear Strength, MPa 130 to 220
710
Tensile Strength: Ultimate (UTS), MPa 220 to 380
1190
Tensile Strength: Yield (Proof), MPa 120 to 310
800

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 640
1370
Melting Onset (Solidus), °C 520
1320
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 24
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.4
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 25 to 40
120
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 710
1610
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 21 to 36
40
Strength to Weight: Bending, points 28 to 40
30
Thermal Shock Resistance, points 9.4 to 16
34

Alloy Composition

Aluminum (Al), % 90.5 to 94.8
2.5 to 3.3
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.3
15 to 20
Cobalt (Co), % 0
13 to 20
Copper (Cu), % 0 to 0.2
0 to 0.15
Iron (Fe), % 0 to 0.35
0 to 4.0
Magnesium (Mg), % 1.0 to 2.0
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.75
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
42.7 to 64
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.3
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
2.5 to 3.3
Vanadium (V), % 0 to 0.1
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0 to 0.25
0
Residuals, % 0 to 0.15
0